skip to main content


Search for: All records

Creators/Authors contains: "Crossley, Janna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2025
  2. Free, publicly-accessible full text available October 1, 2024
  3. Free, publicly-accessible full text available August 1, 2024
  4. Developmental oxygen is a powerful stressor that can induce morphological and functional changes in the cardiovascular systems of embryonic and juvenile vertebrates. This plasticity has been ascribed, at least in part, to the unique status of the developing cardiovascular system, which undergoes organogenesis while meeting the tissue oxygen demands of the embryo. We have previously reported an array of functional and morphological changes in embryonic American alligators that persist into juvenile life. Most notably, cardiac enlargement as well as functional parameters of anesthetized juvenile alligators remains after embryonic hypoxic exposure. Because the effects of developmental oxygen in crocodilians have only been investigated in anesthetized animals, we explored the pressure dynamics of both ventricles as well as systemic pressure in response to stressors of acute hypoxia and swimming. Our current findings demonstrate that developmental programming of cardiac function (intraventricular pressure and heart rate) does persist into juvenile life, but it is chamber-specific and depends on the experimental manipulation. Acute hypoxic exposure revealed that juvenile alligators that had experienced 10% O 2 as embryos maintain right ventricle function and increase left ventricle function during exposure. Finally, the data indicate blood flow in the left aorta must originate from the left ventricle during acute hypoxia and swimming. 
    more » « less
  5. It is well established that adult vertebrates acclimatizing to hypoxic environments undergo mitochondrial remodeling to enhance oxygen delivery, maintain ATP, and limit oxidative stress. However, many vertebrates also encounter oxygen deprivation during embryonic development. The effects of developmental hypoxia on mitochondrial function are likely to be more profound, because environmental stress during early life can permanently alter cellular physiology and morphology. To this end, we investigated the long-term effects of developmental hypoxia on mitochondrial function in a species that regularly encounters hypoxia during development—the common snapping turtle ( Chelydra serpentina ). Turtle eggs were incubated in 21% or 10% oxygen from 20% of embryonic development until hatching, and both cohorts were subsequently reared in 21% oxygen for 8 months. Ventricular mitochondria were isolated, and mitochondrial respiration and reactive oxygen species (ROS) production were measured with a microrespirometer. Compared to normoxic controls, juvenile turtles from hypoxic incubations had lower Leak respiration, higher P:O ratios, and reduced rates of ROS production. Interestingly, these same attributes occur in adult vertebrates that acclimatize to hypoxia. We speculate that these adjustments might improve mitochondrial hypoxia tolerance, which would be beneficial for turtles during breath-hold diving and overwintering in anoxic environments. 
    more » « less
  6. null (Ed.)